

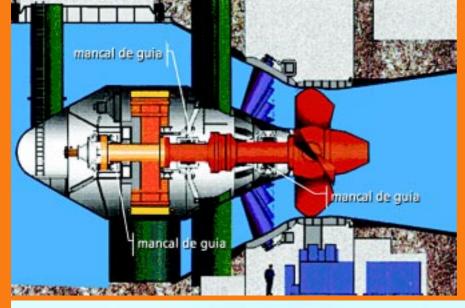
Jirau e Santo Antônio receberão unidades tipo

Turbinas são indicadas para aproveitamentos de baixa queda na Amazônia

o dia 8 de dezembro de 2004, FURNAS e a Construtora Norberto Odebrecht encaminharam à Agência Nacional de Energia Elétrica (Aneel) os estudos de viabilidade para a construção da Usina Hidrelétrica de Jirau, no rio Madeira, em Rondônia. Os estudos indicaram a instalação de 44 turbinas tipo Bulbo de 75 MW cada que, juntamente com a Usina de Santo Antônio, cujos estudos encontram-se em andamento, poderão perfazer um total de mais de 80 unidades instaladas nas usinas do rio Madeira.

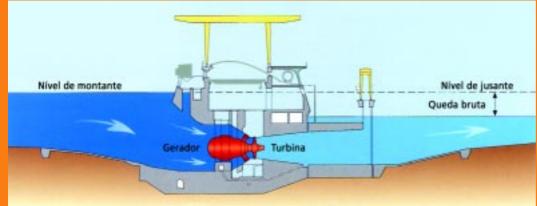
As turbinas do tipo Bulbo são inéditas no sistema FURNAS e ainda pouco presentes no parque gerador brasileiro. Isto se deve a maior parte da geração estar localizada no Centro-Sul do país, onde encontram-se aproveitamentos com alta e média quedas apropriados ao emprego de unidades tipo Francis ou Kaplan de eixo vertical. As novas fronteiras energéticas estão na região Amazônica, onde baixas quedas e altas vazões apontam para a escolha de unidades Bulbo.

MINIMIZAR PERDAS


A unidade geradora tipo Bulbo é composta por uma turbina hidráulica Kaplan de eixo horizontal acoplada a um gerador síncrono também horizontal que se encontra dentro de uma cápsula metálica estanque (bulbo) totalmente imersa no fluxo hidráulico. Como o gerador elétrico e os mancais encontram-se enclausurados, os espaços disponíveis para circulação e manutenção dentro da unidade são exíguos, exigindo das equipes de montagem, operação e manutenção especial atenção quanto ao planejamento das intervenções.

As primeiras unidades Bulbo construídas datam da década de 30. entretanto o desenvolvimento desta tecnologia só se deu a partir da década de 50 com o estudo das unidades reversíveis maremotrizes, na França.

Ao longo do tempo, diversas unidades Bulbo foram sendo construídas, com potências e dimensões cada vez maiores, culminando, em 1989, com a entrada em operação da unidade de Tadami, no Japão, com 65,8 MW de potência, queda de 19,8 m e diâmetro do rotor igual a 6,70 m. Até os dias de hoje, esta é a unidade Bulbo de maior capacidade instalada. As unidades destinadas à Usina de Jirau com 75 MW passarão a ser, portanto, as de maior capacidade em todo o mundo.


Em termos dimensionais, os diâmetros estimados dos rotores das turbinas de Jirau e Santo Antônio serão de 7,94m e 8,15m, respectivamente. A Usina de Murray Lock, nos EUA, possui rotores de turbina com 8,41m.

Como o fluxo é axial, ou seja, paralelo ao eixo, as passagens hidráulicas das unidades Bulbo são mais simples e o comprimento da passagem hidráulica é mais curto do que as das unidades de

Unidade geradora corte transversal

Esquema de turbina

Casa de força corte transversal

eixo vertical. Tais características são importantes em usinas de baixa queda, pois minimizam as perdas de energia.

Outra vantagem das unidades Bulbo é a sua capacidade de operar como descarregador de vazão (vertedouro de fundo), operando sem carga e permitindo um escoamento de até 70% da vazão nominal, obtendo-se maior segurança à passagem da cheia de projeto, bem como possibilitando o escoamento de sedimentos depositados próximos à tomada d'água.

Apesar de requerer dispositivos especiais na montagem das unidades Bulbo, é possível obter maior rapidez de montagem em relação às unidades de eixo vertical. A montagem se desenvolve de modo independente entre turbina e gerador, podendo seguir em paralelo durante grande parte do tempo, devido ao acesso independente para o recinto do gerador e o recinto da turbina, logo a jusante.

EMPREGOS

A Superintendência de Engenharia (SE.T) e o Departamento de Engenharia Mecânica (DEM.T) vêm se capacitando para desenvolver o projeto de usinas utilizando unidades geradoras do tipo Bulbo, por meio da realização de visitas a instalações, bem como da troca de informações com a Cemig, cuja Usina de Igarapava é uma das três no Brasil equipadas com unidades Bulbo. Localizada no rio Grande, Igarapava é referência nacional com cinco unidades de 45 MW cada. Técnicos da SE.T e da Superintendência de Empreendimentos de Geração (SG.T) visitaram usinas na Europa, onde unidades Bulbo são amplamente empregadas. No Rio Danúbio, os técnicos de FURNAS puderam observar usinas como Freudenau, totalmente integradas à urbanização das cidades ribeirinhas, proporcionando não apenas geração energética, como navegabilidade e áreas de lazer para a população.

Existem diversos desafios ligados à construção das usinas do rio Madeira. Serão mais de 80 unidades a serem fornecidas, transportadas, montadas e comissionadas na região Norte do Brasil. Existe até a possibilidade de implantação de uma fábrica de hidrogeradores bulbo na região, para facilitar o fornecimento de tais equipamentos, com a consequente criação de um número expressivo de postos de trabalho.

O projeto das usinas do rio Madeira será inovador pela utilização de equipamentos ainda não existentes no parque gerador de FURNAS, como também pelo grande número de unidades a serem instaladas. Não só equipes de projeto de FURNAS estão sendo capacitadas, mas também a Empresa está se preparando para a formação de equipes especializadas em montagem, operação e manutenção de usinas hidrelétricas utilizando unidades geradoras do tipo Bulbo. []